Clathrin heavy chain is required for spore cell but not stalk cell differentiation in Dictyostelium discoideum.
نویسندگان
چکیده
Previous studies of a clathrin-minus Dictyostelium cell line revealed important roles for clathrin heavy chain (clathrin) in endocytosis, secretion of lysosomal hydrolases and osmoregulation. In this paper, we examine the contribution of clathrin-mediated membrane traffic to development in Dictyostelium discoideum. Clathrin-minus cells were delayed in early development. When exposed to starvation conditions, clathrin-minus cells streamed and aggregated more slowly than wild-type cells. Although clathrin-minus cells displayed only 40% the level of extracellular cyclic AMP binding normally found in wild-type cells, they responded chemotactically to extracellular cyclic AMP. Clathrin-minus cells down-regulated cyclic AMP receptors, but only to half the extent of wild-type cells. We found that the extent of development of clathrin-minus cells was variable and influenced by environmental conditions. Although the mutant cells always progressed beyond the tipped mound stage, the final structure varied from a finger-like projection to a short, irregular fruiting body. Microscopic examination of these terminal structures revealed the presence of intact stalks but a complete absence of spores. Clathrin-minus cells expressed prestalk (ecmA and ecmB) and prespore (psA and cotB) genes normally, but were blocked in expression of the sporulation gene spiA. Using clathrin-minus cells that had been transformed with various promoter-lacZ reporter constructs, we saw only partial sorting of clathrin-minus prestalk and prespore cells. Even when mixed with wild-type cells, clathrin-minus cells failed to sort correctly and never constructed functional spores. These results suggest three roles for clathrin during Dictyostelium development. First, clathrin increases the efficiency of early development. Second, clathrin enables proper and efficient patterning of prestalk and prespore cells during culmination. Third, clathrin is essential for differentiation of mature spore cells.
منابع مشابه
Dual regulation of the glycogen phosphorylase 2 gene Dictyostelium discoideum: the effects of DIF-1, cAMP, NH3 and adenosine.
Cell differentiation in Dictyostelium results in the formation of two cell types, stalk and spore cells. The stalk cells undergo programmed cell death, whereas spore cells retain viability. The current evidence suggests that stalk cell differentiation is induced by Differentiation Inducing Factor (DIF), while spore cell differentiation occurs in response to cAMP. We have discovered the first de...
متن کاملClathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium
To investigate the intracellular role of the clathrin heavy chain in living cells, we have used "antisense" RNA to engineer mutant Dictyostelium discoideum cells that are severely deficient in clathrin heavy chain expression. Immunoblots stained with an anti-clathrin heavy chain antiserum revealed that mutant cells contained undetectable amounts of clathrin heavy chain protein. Similarly, North...
متن کاملMeasurements of intracellular pH and its relevance to cell differentiation in Dictyostelium discoideum.
A method was developed in this study to measure the intracellular pH (pHi) of Dictyostelium discoideum cells with a pH-sensitive fluorescence dye, carboxyfluorescein dibutyrate, and the pHi values of cells on the stalk and spore pathways were compared. The pHi of prestalk cells was lower than that of prespore cells by approximately 0.3 pH unit. In monolayer cultures of sporogenous mutants, whic...
متن کاملSecreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum
Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In thi...
متن کاملRegulation of stalk and spore antigen expression in monolayer cultures of Dictyostelium discoideum by pH.
The terminal differentiation of Dictyostelium discoideum cells plated as monolayers with cyclic AMP is dramatically affected by developmental buffer conditions. High pH and addition of weak bases induces spore differentiation while low pH and weak acids favour stalk cell formation. In order to analyse the timing and nature of this regulation we have raised and characterized an anti-stalk serum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 124 2 شماره
صفحات -
تاریخ انتشار 1997